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Abstract

In the present work, fluid–structure interaction problems are analysed by means of optimised boundary element–finite

element coupling procedures. The boundary element method is here employed to numerically model acoustic fluids and the

finite element method is applied to discretise dynamic bodies (nonlinear effects included). Boundary element—finite

element coupling is accomplished by an iterative algorithm: each boundary element or finite element sub-domain is

analysed independently (as an uncoupled model) and a successive renewal of the variables at the common interfaces is

performed, until convergence is achieved. The evaluation of an optimised relaxation parameter is introduced taking into

account the minimisation of a square error functional. The algorithm that arises is more efficient and stable, representing

an advancement of the iterative procedure. At the end of the paper, numerical examples are presented, illustrating the

potentialities of the proposed methodology.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Numerical analysis of fluid–structure coupled systems is a complex task, requiring proper treatment of sub-
domains in which different physical phenomena are involved, as well as suitable numerical modelling of wave
propagation across arbitrary shaped interfaces.

In the present work, two distinct methods are considered in order to numerically discretise the different sub-
domains of the fluid–structure coupled model, namely: the boundary element and finite element method. As it
is well known, the finite element method is well suited for modelling inhomogeneous and anisotropic solids, as
well as for dealing with nonlinear behaviour. The boundary element method, on the other hand, is an
appropriate numerical tool to discretise acoustic fluids with infinite extension and/or high gradient
concentrations. Thus, coupling boundary and finite element procedures allows the combination of several
advantages, which is beneficial for fluid–structure interaction analysis.

Considering time-domain fluid–structure interaction modelling, most of the boundary element and finite
element coupling algorithms [1–7] are formulated in a way that a coupled system of equations is established,
which afterwards has to be solved using a standard direct solution scheme. Such a procedure leads to several
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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problems with respect to accuracy and efficiency. First, the coupled system of equations has a banded
symmetric structure only in the finite element method part, while in the boundary element method part it is
non-symmetric and fully populated. Consequently, for its solution the optimised solvers usually used by the
finite element method cannot be employed anymore, which leads to rather expensive calculations with respect
to computer time. Second, the duration of a time-step needs to be the same in all sub-domains. In general,
however, the velocities of the propagating waves in the solid and the fluid are quite different, such that a
unified time step may cause serious problems in the numerical solution algorithms (instabilities, lack of
accuracy etc.). Third, in the case of taking into account some nonlinearity within the finite element sub-
domains, the rather big coupled system of equations needs to be solved in each step of the iterative process,
i.e., a few times within each time step. This is very computer time consuming.

Recently, an iterative boundary element—finite element coupling algorithm was developed by Soares et al.
[8–10] in order to treat fluid–structure coupled models. Iterative coupling approaches allow boundary element
and finite element sub-domains to be analysed separately, leading to smaller and better-conditioned systems of
equations (different solvers, suitable for each sub-domain, may be employed). Moreover, a small number of
iterations are required for the algorithm to converge and they can be carried out together with the nonlinear
analysis (boundary element equations do not need to be dealt with in each step of the nonlinear process).
Considering time dependent problems, the stability of the numerical algorithm is also greatly improved, as it is
straightforward to use different time-steps (as well as independent spatial discretisations) for sub-domains
with different properties. Thus, as has been previously reported [8–10], iterative boundary element—finite
element coupling is an efficient and appropriate numerical methodology to deal with time-domain
fluid–structure interaction problems.

In the present work an optimised iterative boundary element—finite element coupling algorithm is
presented. A square error functional is minimised and an expression for an optimal relaxation parameter is
deduced. In fact, the effectiveness of the iterative coupling algorithm is closely related to the relaxation
parameter selection: an inappropriate selection can drastically increase the number of iterations in the analysis
or, even worse, make convergence unfeasible. As it has been previously reported for some non-transient
analysis [11,12], an optimal relaxation parameter selection is extremely case dependent: it depends on the
geometry and physical properties of the model, discretisation adopted, boundary conditions etc. The present
work proposes a simple expression to optimise the convergence of the iterative process, leading to a more
efficient and robust boundary element—finite element coupling technique.

At the end of the paper, numerical examples are considered, illustrating the decrease in the number of
iterations when optimised relaxation parameters are adopted, as well as the complex dynamic behaviour of
these parameters along typical fluid–structure interaction analysis by means of boundary element—finite
element coupled procedures.

2. Boundary and finite element procedures

In the present section, the boundary and finite element basic equations are presented. The boundary element
method is here applied to numerically discretise acoustic fluids and the finite element method is employed to
model dynamic bodies (nonlinear effects included). Only a very short description concerning the fluid and
solid sub-domain modelling is presented next; more details can be found in Refs. [13–18]. In the text that
follows, right and left superscripts stand for time and iterative indexes, respectively, and right subscripts stand
for a sub-domain reference (as for instance, subscript B or F indicates that a variable is related to a sub-
domain modelled by the boundary element or finite element method, respectively).

2.1. Fluid modelling

Taking into account boundary element discretisations, acoustic fluids may be analysed by the following
system of equations:

CPtn ¼
Xn

m¼1

ðGtn�mþ1Qtm �Htn�mþ1PtmÞ þDtn , (1)
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where Ptn and Qtn stand for hydrodynamic pressure and flux vectors, respectively, at time tn; C is a point
location matrix and Gtn and Htn are influence matrices. Vector Dtn accounts for domain terms, as for instance
initial conditions and/or body source contributions.

By re-arranging the system of Eqs. (1), taking into account the boundary conditions of the problem, the
following system of equations arises:

ABX
tn ¼ BBY

tn þ Ztn , (2)

where Xtn is a vector standing for unknown pressures and fluxes and vector Ytn stands for the according known
nodal values; AB and BB are boundary element effective matrices and vector Ztn accounts for boundary
(and domain, if it is the case) time-convolution contributions. Eqs. (1)–(2) enable the computation of the time-
domain boundary element method response at time tn; they are the basis for the boundary element—finite
element coupling scheme concerning the fluid sub-domain.

2.2. Solid modelling

Taking into account a finite element discretisation, the governing system of equations describing a nonlinear
dynamic model is given by

Mðkþ1Þ €U
tn
þ Cðkþ1Þ _U

tn
þ K

ðkþ1Þ
T DU ¼ Ftn � ðkÞRtn , (3a)

ðkþ1ÞUtn ¼ ðkÞUtn þ ðkþ1ÞDU, (3b)

where M, C, and KT are mass, damping and nonlinear stiffness matrices, respectively. The nonlinear residual
vector is represented by Ftn � ðkÞRtn and ðkþ1ÞDU is the variation of the incremental displacements, calculated at
each iterative step. ðkþ1ÞUtn , ðkþ1Þ _U

tn
and ðkþ1Þ €U

tn
are the displacement, velocity and acceleration vectors,

respectively, at time tn and iterative step (k+1). After considering a time integration scheme (e.g., the Newmark
method), an effective system of equations can be obtained, as described by

A
ðkþ1Þ
F DU ¼ ðkÞBF , (4)

which must be solved at each iterative step. In Eq. (4), AF is the finite element method effective nonlinear
stiffness matrix and ðkÞBF is the effective residual vector. Eqs. (3)–(4) enable the computation of the transient
finite element method response at time tn; they are the basis for the boundary element—finite element coupling
scheme concerning the solid sub-domain.

3. Coupling of boundary elements and finite elements

In the present work, each boundary element or finite element sub-domain is analysed independently (as an
uncoupled model) and a successive renewal of the variables at the common interfaces is performed, through an
iterative procedure, until convergence is achieved.

For a fluid–structure interaction problem, the boundary conditions at coupling interfaces, taking into
account boundary and finite element formulations, are given by

TðFtn

F Þi ¼ 0, (5a)

NðFtn

F Þi þ ðP̄
tn

B Þi ¼ 0, (5b)

Nð €U
tn

F Þi � ð1=rÞðQ
tn

B Þi ¼ 0, (5c)

where functions Tð�Þi and Nð�Þi lead to the tangential and to the normal component of their arguments,
respectively, at a node i of the common boundary—finite element interface. In Eq. (5b)—in order to obtain
consistency between finite element and boundary element formulations—P̄ represents the equivalent nodal
hydrodynamic pressure force, which is obtained from the pressure distribution P. In Eq. (5c), r stands for the
mass density of the fluid.
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In the iterative coupling approach being considered, natural boundary conditions are prescribed, at the
common interfaces, for each sub-domain (either modelled by the boundary or finite element method). The
accelerations evaluated at the sub-domains modelled by the finite element method are used to obtain the fluxes
(prescribed interface boundary condition) for the sub-domains modelled by the boundary element method
(Eq. (5c)) and the pressures evaluated at the sub-domains modelled by the boundary element method are used
to obtain the nodal forces (prescribed interface boundary condition) for the sub-domains modelled by the
finite element method (Eqs. (5a) and (5b)). Concisely, each sub-domain is analysed separately ( €U

tn

F and P
tn

B are
evaluated at each iterative step) and the interface relations €U

tn

F ! Q
tn

B and P
tn

B ! F
tn

F are iteratively considered
until convergence is achieved. A basic algorithm solution for the boundary element—finite element iterative
coupling is described in Table 1.

In order to consider different time-steps in each sub-domain, interpolation/extrapolation procedures along
time may be considered, as it is described in the fourth and sixth steps of the algorithm presented in Table 1
(bj and zj stand for time interpolation/extrapolation coefficients). Space interpolation procedures may also
be adopted in order to consider independent boundary/finite element method meshes (i.e., disconnected
boundary element and finite element interface nodes); this can be accomplished by considering proper
interface functions NBð�Þ and N̄

�1
F ð�Þ. In the third step of the algorithm, NBð�Þ evaluates normal components at

boundary element interface nodes considering interpolation of its argument spatial distribution. In the seventh
step, analogous procedures are considered by N̄

�1
F ð�Þ, which additionally compute nodal equivalent values.

Using space/time interpolation/extrapolation procedures, optimal modelling of each sub-domain may be
achieved, which is very important in what concerns flexibility, efficiency, accuracy and stability aspects.

As it is described in the second step of the algorithm, a relaxation parameter a is considered in order to
ensure and/or to speed up convergence. The effectiveness of the coupling algorithm is intimately related to this
relaxation parameter selection: an inappropriate choice for a can drastically increase the number of iterations
in the analysis or, even worse, make convergence unfeasible. An optimal relaxation parameter selection,
however, is extremely case dependent: it is function of the physical properties of the model, geometric aspects,
adopted spatial and temporal discretisations etc. [8,11,12]. In the next sub-section, a simple expression for an
optimal relaxation parameter is proposed, considering fluid–structure coupled analyses.
3.1. Optimal relaxation parameter

In order to evaluate an optimal relaxation parameter, the following square error functional is here
minimised:

f ðaÞ ¼ jjðkþ1ÞQtB

B ðaÞ �
ðkÞQ

tB

B ðaÞjj
2. (6)

Taking into account the relaxation of the fluxes for the (k+1) and (k) iterations, Eqs. (7a) and (7b) may be
written, regarding steps 2–4 of the coupling algorithm:

ðkþ1ÞQ
tB

B ¼ b0rNBð
ðkþ1Þ €U

tF

F Þ þQ0 ¼ b0rNBðaðkþaÞ €U
tF

F þ ð1� aÞðkÞ €U
tF

F Þ þQ0, (7a)
Table 1

Steps for the iterative boundary element—finite element coupling algorithm.

(1) Finite element sub-domains analyses: evaluation of ðkþaÞ €U
tF

F at common interfaces

(2) Adoption of a relaxation parameter: ðkþ1Þ €U
tF

F ¼ aðkþaÞ €U
tF

F þ ð1� aÞðkÞ €U
tF

F

(3) Flux–acceleration compatibility (spatial interpolation): ðkþ1ÞQtF

B ¼ rNBð
ðkþ1Þ €U

tF

F Þ

(4) Flux temporal interpolation/extrapolation: ðkþ1ÞQtB

B ¼ b0
ðkþ1ÞQ

tF

B þ
PJB

j¼1bjQ
ðt�jDtÞB=F

B

(5) Boundary element sub-domains analyses: evaluation of ðkþ1ÞPtB

B at common interfaces

(6) Pressure temporal extrapolation/interpolation: ðkþ1ÞPtF

B ¼ z0ðkþ1ÞP
tB

B þ
PJF

j¼1zjP
ðt�jDtÞF=B

B

(7) Force–pressure compatibility (spatial interpolation): ðkþ1ÞFtF

F ¼ �N̄
�1
F ð
ðkþ1ÞP

tF

B Þ

(8) Check for convergence (go back to step 1 if convergence is not achieved)
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ðkÞQ
tB

B ¼ b0rNBð
ðkÞ €U

tF

F Þ þQ0 ¼ b0rNBðaðkþa�1Þ €U
tF

F þ ð1� aÞðk�1Þ €U
tF

F Þ þQ0, (7b)

where Q0 stands for previous time-step flux contributions according to the time interpolation/extrapolation
procedure in focus.

Substituting Eqs. (7) into Eq. (6) yields:

f ðaÞ ¼ ðb0rÞ
2
jjaðkþaÞWtF

F þ ð1� aÞðkÞWtF

F jj
2

¼ ðb0rÞ
2
ða2jjðkþaÞWtF

F jj
2 þ 2að1� aÞððkþaÞWtF

F ;
ðkÞW

tF

F Þ

þ ð1� aÞ2jjðkÞWtF

F jj
2Þ, (8)

where the inner product definition is employed (e.g., ðW;WÞ ¼ jjWjj2) and new variables, as defined in Eq. (9),
are considered:

ðkþlÞW
tF

F ¼ NBð
ðkþlÞ €U

tF

F Þ �NBð
ðkþl�1Þ €U

tF

F Þ. (9)

To find the optimal a that minimises the functional f(a), Eq. (8) is differentiated with respect to a and the result
is set to zero, as described below:

ajjðkþaÞWtF

F jj
2 þ ð1� 2aÞððkþaÞWtF

F ;
ðkÞW

tF

F Þ þ ða� 1ÞjjðkÞWtF

F jj
2 ¼ 0. (10)

Re-arranging the terms in Eq. (10), yields:

a ¼ ððkÞWtF

F ;
ðkÞW

tF

F �
ðkþaÞW

tF

F Þ=jj
ðkÞW

tF

F �
ðkþaÞW

tF

F jj
2, (11)

which is an easy to implement expression that provides an optimal value for the relaxation parameter a, at
each iterative step.

It is important to note that the relation 0oap1 must hold. In the present work, the optimal relaxation
parameter is evaluated according to Eq. (11) and if aeð0:01; 1:00Þ the previous iterative-step relaxation
parameter is adopted. For the first iterative step, a ¼ 0.5 is selected.

4. Numerical aspects and applications

In the next sub-sections some numerical applications are presented, illustrating the potentialities of the
proposed methodology. In the first application, a submerged cylinder subjected to an externally applied
source is studied. In the second example, a dam-reservoir system is analysed, taking into account linear and
nonlinear behaviour.

For all the applications that follow, within the finite element sub-domains, the Newmark method
(trapezoidal rule) is considered for time integration and linear finite elements are adopted. For the boundary
BEM
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Fig. 1. Submerged cylinder subjected to an external source: sketch of the model.
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element sub-domains, spatial discretisation based on linear boundary elements is adopted and linear and
piecewise constant time interpolation functions are considered for pressures and fluxes, respectively. The time
interpolation/extrapolation procedures related to the boundary element—finite element coupling algorithm
are based on the boundary element method time interpolation functions [10]. The convergence of the coupling
and/or of the nonlinear iterative process is based on finite element method displacement and residual norms
(in the present work, a tight tolerance error of 10�5 is adopted). The time-step discretisation within each sub-
domain is selected based on the wave propagation velocities involved.
4.1. Submerged cylinder

This example is concerned with the analysis of an elastic infinite cylinder excited by an acoustic wave caused
by an external explosion [8,19], as depicted in Fig. 1. The properties of the cylinder are: E ¼ 2.1� 1011N/m2
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Fig. 2. Time history results at points A, B and C (–&–, point A; –’–, point B; and – – –, point C): (a) horizontal displacements and (b)

hydrodynamic pressures.
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(Young modulus), n ¼ 0.3 (Poisson’s ratio), r ¼ 7800 kg/m3 (mass density). The properties of the fluid are:
c ¼ 1524m/s (wave velocity), r ¼ 1000 kg/m3 (mass density). The geometry of the problem is defined by:
r ¼ 0.18m, t ¼ 0.0259m and d ¼ 1.0m. The explosion effects are simulated by the following concentrated
source: S(X,t) ¼ s(t)d(X�x), where d is the Dirac delta function, x ¼ (d,0) and s(t) is depicted in Fig. 1. Forty-
eight boundary elements are used to discretise the fluid and forty-eight quadrilateral finite elements are
employed to discretise the cylinder. The time-step adopted within the boundary element sub-domain is
DtB ¼ 0.005ms; within the finite element sub-domain a time-step DtF ¼ 0.001ms is adopted.

The horizontal displacement and hydrodynamic pressure time-history results at points A (F ¼ 0), B (F ¼ p)
and C (F ¼ p/2) are depicted in Fig. 2. In Table 2, the average number of iterations per time step and the
relative CPU time of the iterative process (both within the time interval 0.5msoto1.0ms) are presented,
considering optimal relaxation parameters (Eq. (11)) and some constant pre-selected a values (the relative
CPU time described in Table 2 is computed as the CPU time of the iterative analysis in focus divided by the
CPU time of the iterative analysis with optimal relaxation parameters). As it can be observed, optimal
relaxation parameters considerably reduce the amount of iterations in the analysis, improving the efficiency
and robustness of the methodology.

In Fig. 3, the optimal relaxation parameters, evaluated at each iterative step, are presented. As it can be
observed, in the present application, the optimal relaxation parameter varies around very distinct values
(according to Fig. 3, it varies mostly around 0.20, 0.55 and 0.95) and a constant pre-selection for a, even when
Table 2

Average number of iterations per time-step and relative CPU time in the submerged cylinder analysis considering optimal and constant

pre-selected relaxation parameters.

Relaxation parameter Average number of iterations per time step Relative CPU time

0.1 4.14 1.120

0.2 4.02 1.086

0.3 4.00 1.084

0.4 4.01 1.084

0.5 4.04 1.088

0.6 4.04 1.096

0.7 4.02 1.079

0.8 3.98 1.075

0.9 3.84 1.008

1.0 3.98 1.070

Optimal 3.64 1.000
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Fig. 3. Optimal relaxation parameters for each iterative step.
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most appropriated, is unable to account for this dynamic behaviour. It is important to note that Eq. (11)
establishes a correlation between the values of the relaxation parameter and the errors of the iterative
procedure, once variable W is computed based on iterative residuals (see Eq. (9)).
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Fig. 4. Dam with a semi-infinite storage-lake: sketch of the model.
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An expression to evaluate the optimal relaxation parameter, properly considering the evolution of the
different phenomena involved, is of great importance in order to ensure the effectiveness of the iterative
coupling methodology: Eq. (11) provides a simple and easy to implement expression to evaluate efficiently this
complex parameter.
4.2. Dam-reservoir system

In this second example, a dam-reservoir system [1,8,10,19,20], as depicted in Fig. 4, is analysed.
The structure is subjected to a sinusoidal distributed vertical load on its crest, acting with an angular
frequency w ¼ 18 rad/s. The material properties of the dam are: E ¼ 3.437� 109N/m2, n ¼ 0.25 and
r ¼ 2000 kg/m3 (a perfectly plastic material obeying the von Mises yield criterion is assumed). The adjacent
water is characterized by c ¼ 1436m/s and r ¼ 1000 kg/m3 (a water level defined by H ¼ 50m is considered).
Ninety-three quadrilateral finite elements are employed to discretise the dam and the fluid is discretised by
constant-length boundary elements ð‘ ¼ 5mÞ. Regarding temporal discretisation, two cases are here
considered, namely: (i) case 1—DtB ¼ 0.0035 s and DtF ¼ 0.00175 s; and (ii) case 2—DtB ¼ 0.0035 s and
DtF ¼ 0.000875 s.
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In Fig. 5, vertical displacements at point A and hydrodynamic pressures at point B are depicted, considering
cases 1 and 2, as well as linear and nonlinear analyses. In Fig. 6, the number of iterations per time step is
presented, considering optimal relaxation parameters (one should keep in mind that a tight tolerance error is
being considered). In Fig. 7, the optimal relaxation parameters, evaluated at each iterative step, are plotted. As
can be observed, for the current analyses, the optimal relaxation parameter varies intricately within the
interval (0.2; 1.0), illustrating the intense dynamic behaviour of this variable along typical fluid–structure
interaction analyses.

In Table 3, the total amount of iterations and the relative CPU time of the iterative process, taking into
account nonlinear analyses (cases 1 and 2), are specified. The results are presented considering optimal and
some constant pre-selected relaxation parameter values. As can be observed, optimal relaxation parameters
reduce the computational cost of the analysis, as well as they ensure convergence in the iterative coupling
procedure (in Table 3, the symbol N indicates that convergence is not achieved).

The reader should keep in mind that Eq. (11) requires only very simple vector–vector operations (as for
instance, vector subtractions and inner products), taking into account only common interface nodal values. In
any iterative step, several vector–vector and matrix–vector operations must be considered in order to
numerically analyse the model, taking into account all the nodal values of the problem (which is usually
several times greater than the number of the common interface nodal values). As a consequence, the
computational effort of computing the optimal relaxation parameter is considerably smaller than that of an
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Table 3

Total number of iterations and relative CPU time in the dam-reservoir system nonlinear analyses considering different relaxation

parameter values.

Relaxation parameter Total number of iterations Relative CPU time

Case 1 Case 2 Case 1 Case 2

0.3 3278 4885 1.186 1.058

0.6 3526 N 1.294 N

0.9 N N N N

Optimal 2825 4757 1.000 1.000

D. Soares Jr. / Journal of Sound and Vibration 322 (2009) 184–195194
extra iterative step, and the reduction of the number of iterations is mandatory for the efficiency of
methodology. For problems with a large number of degrees of freedom, the overhead of determining the
optimal relaxation parameter is even less significant, since the overburden of evaluating an extra iterative step
is much more expressive. Moreover, it must be highlighted that a constant pre-selected value for the relaxation
parameter does not ensure convergence (as it is illustrated in the present application) and an optimal
relaxation parameter technique must be employed not only to improve the efficiency of the methodology, but
also its robustness.

5. Conclusions

In the present work, an optimised boundary element—finite element coupling algorithm to analyse
fluid–structure interaction problems is discussed. A simple and efficient expression for an optimal relaxation
parameter is proposed, improving the effectiveness and robustness of the time-domain iterative coupling
methodology (it is important to observe that, in applications such like fluid–structure interaction problems, a
priori good selection for a is hardly trivial and an inappropriate value may very easily invalidate convergence).
At the end of the paper, numerical examples are presented, briefly illustrating the potentialities of the
described coupling technique (efficiency, accuracy, stability, flexibility etc.) and highlighting the complexity of
the optimal relaxation parameter evolution, according to different cases of analysis.

The present methodology improves previous works on the topic (i.e., concerning iterative coupling of
hyperbolic time-domain models) and it is a step forward regarding the advance of boundary element—finite
element coupling techniques.
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